Modeled repetitive motion strain and indirect osteopathic manipulative techniques in regulation of human fibroblast proliferation and interleukin secretion.

نویسندگان

  • Kate R Meltzer
  • Paul R Standley
چکیده

CONTEXT Clinical studies have supported the efficacy of a variety of osteopathic manipulative techniques. However, an evidence base for the cellular mechanisms underlying these clinical findings is lacking. OBJECTIVE To investigate human fibroblast proliferation and interleukin secretory profiles in response to modeled repetitive motion strain (RMS) and modeled indirect osteopathic manipulative techniques (IOMT). The authors hypothesized that the RMS model would increase fibroblast proliferation and proinflammatory interleukin secretion, while the IOMT model would reverse these effects. METHODS Human fibroblasts were exposed in vitro to one of three conditions: (1) an 8-hour RMS; (2) a 60-second IOMT; or (3) an 8-hour RMS followed by a 60-second IOMT. Data on fibroblast proliferation and interleukins present in conditioned media were obtained immediately after RMS, at 24 hours after RMS (24RMS), at 24 hours after IOMT (24IOMT), and at 24 hours after RMS and IOMT (24RMS+IOMT). Cytokine protein array and enzyme-linked immunosorbent assay were used in data analysis. Fibroblast proliferation was also measured colorimetrically with a cell proliferation assay. RESULTS Fibroblasts that underwent RMS secreted several proinflammatory interleukins 24 hours after strain cessation, with substantially increased secretion of IL-1alpha, IL-1beta, IL-2, IL-3, IL-6, and IL-16. At 24 hours after strain cessation, fibroblasts subjected to RMS also secreted increased amounts of the anti-inflammatory IL-1ra, and they displayed 15% less proliferation, compared with baseline cells (P<.05). Fibroblasts that underwent IOMT, when analyzed at 24 hours after IOMT, did not display increased interleukin secretion or proliferation. However, they did display a 44% reduction in proinflammatory IL-3 secretion when compared with baseline cells (P<.05). The use of 24RMS+IOMT did not induce interleukin secretion in fibroblasts that were analyzed 24 hours after the combined exposure. However, cells in the 24RMS+IOMT group did display a 46% reduction in proinflammatory IL-6 secretion compared with RMS alone (24RMS; P<.05), as well as a 51% increase in proliferation compared with the 24RMS group (P<.05). CONCLUSION An in vitro strain model that simulates RMS has different effects on fibroblast proliferation and interleukin secretion than does an in vitro model that simulates IOMT. Modeled RMS appears to cause a reduction in fibroblast proliferation and a delayed inflammatory response. Modeled IOMT not only fails to induce this response, it also reverses inflammatory effects in cells that have been strained repetitively. Data from the present study suggest that fibroblast proliferation and expression/secretion of proinflammatory and anti-inflammatory interleukins may contribute to the clinical efficacy of indirect osteopathic manipulative techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro biomechanical strain regulation of fibroblast wound healing.

CONTEXT Strain-directed therapy such as vacuum compression and manual manipulative therapies are clinically effective, but their cellular and molecular mechanisms are not well understood. OBJECTIVE To determine the effects of modeled myofascial release (MFR) on fibroblast wound healing and to investigate the potential role of nitric oxide (NO) in mediating these responses. METHODS Using an ...

متن کامل

The Role of Biomechanics in Repetitive Motion Strain and OMT

Fundamental Factors in OMT The Role of Biomechanics in Repetitive Motion Strain and OMT Repetitive and forceful movements, awkward postures, and sustained forces often lead to repetitive motion strain (RMS), a common condition generally correlated to occupationrelated factors such as physical and psychological distress and monotonous work, but which is also correlated to non–work related factor...

متن کامل

In vitro biophysical strain model for understanding mechanisms of osteopathic manipulative treatment.

CONTEXT Normal physiologic movement, pathologic conditions, and osteopathic manipulative treatment (OMT) are believed to produce effects on the shape and proliferation of human fibroblasts. Studies of biophysically strained fibroblasts would be useful in producing a model of the cellular mechanisms underlying OMT. OBJECTIVE To investigate the effects of acyclic in vitro biophysical strain on ...

متن کامل

Modeled Osteopathic Manipulative Treatments: A Review of Their in Vitro Effects on Fibroblast Tissue Preparations.

A key osteopathic tenet involves the body's ability to self-heal. Osteopathic manipulative treatment (OMT) has been evolved to improve this healing capacity. The authors' in vitro work has focused on modeling 2 common OMT modalities: myofascial release (MFR) and counterstrain. Their studies have evaluated the effects of these modalities on wound healing, cytokine secretion, and muscle repair. T...

متن کامل

Biological Effect of Modern Fetal Ultrasound Techniques on Human Dermal Fibroblast Cells

Background: Diagnostic ultrasound has been used to detect human disease especially fetus abnormalities in recent decades. Although the harmful effects of diagnostic ultrasound on human have not been established so far, several researchers showed it has had bioeffects in cell lines and in experimental animals. Three-dimensional (3D), four-dimensional (4D), and color Doppler sonography are new te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the American Osteopathic Association

دوره 107 12  شماره 

صفحات  -

تاریخ انتشار 2007